Machine Learning versucht, basierend auf Erfahrungen Wissen über Entscheidungen zu generieren mit dem Ziel selbständig Entscheidungen treffen zu können. Erfahrungen sind dabei i.d.R. Daten aus der Vergangenheit, sogenannte Trainingsdaten. Die gewählten Trainingsdaten beeinflussen stark die Qualität der Entscheidungen, die der ML Algorithmus nach dem Training selbständig trifft. Nur so gut, wie die vergangenen Entscheidungen waren, kann dann der Algorithmus auch für zukünftige Entscheidungen lernen. Eine Ausnahme ist dabei das Reinforcement Learning. Über ein Belohnungssystem lernt der Algorithmus selber, welche Entscheidung die Belohnung maximiert.
Anfang Januar 2019 hatten wir bei unserem Data Science Bielefeld Meetup (www.datascience-bielefeld.de) Marcus Cramer (Head of Analytics) und David Middelbeck (Head of Product) von Westphalia DataLab bei uns zu Gast, die etwas zu “Reinforcement Learning – Optimierung von Logistikprozessen” erzählt hatten. Marcus hatte mit dem windy gridworld eines der klassischen Reinforcement Learning Beispiele mitgebracht.
Weiterlesen „Windy gridworld: klassisches RL Problem mit R gelöst“